Jakie będą prędkości wózka oraz rampy, kiedy wózek dotrze do jej końca (patrz: rysunek). Jakie są prędkości rampy i wózka względem ziemi w chwili, gdy wózek opuszcza rampę? 118. Wyznacz środek masy układu brył pokazanego na rysunku. Przyjmij jednakową grubość każdego prostopadłościanu wynoszącą 20 cm oraz jednorodną
Przejdź do listy zasobów. sprawdzanie wiedzy Opis: Liczba zadań: 10 Liczba punktów: 23 Liczba grup: 2 Szacowany czas: 26min Autor: Nowa Era Filtry: testy Poziom: Klasa 1 Źródło zadań: 2. Ruch po okręgu i grawitacja 11. Ruch po okręgu 12. Siła dośrodkowa 13. Obliczanie siły dośrodkowej 14. Grawitacja 15. Siła grawitacji jako siła dośrodkowa 16. Ruch satelitów 17. Ciężar i nieważkość 18. Księżyc – towarzysz Ziemi 19. Układ Słoneczny Zaktualizowany: 2021-10-21 Nic dziwnego, że świat wydaje nam się dość stabilnym miejscem (przynajmniej jeśli chodzi o wielkości fizyczne). Jednak zaraz po Wielkim Wybuchu mogło być zupełnie inaczej. W rezultacie inflacji kosmos mogły wypełniać niezwykle silne fale grawitacyjne. Niektóre z nich, nakładając się na siebie, mogły tworzyć tzw. fale stojące.
O ruchu jednostajnym po okręgu mówimy wówczas, gdy ciało porusza się po okręgu lub łuku okręgu ze stałą wartością bezwzględną prędkości. Wyrażenie bezwzględna wartość prędkości jest tu bardzo istotne, ponieważ w ruchu jednostajnym po okręgu kierunek wektora prędkości $\vec{V}$ ciała ulega ciągłej zmianie i wynosi +V albo –V. Ciągła zmiana kierunku prędkości ciała powoduje, że ruch jednostajny po okręgu, pomimo stałej bezwzględnej wartości prędkości ciała, jest ruchem przyspieszonym. Przyspieszenie dośrodkowe Zwróć uwagę (rysunek poniżej), że wektor prędkości $\vec{V}$ jest zawsze styczny do okręgu i zwrócony w kierunku ruchu ciała. Wektor przyspieszenia $\vec{a}$ jest, z kolei, zawsze skierowany, wzdłuż promienia okręgu r, ku jego środkowi. Takie ułożenie wektora przyspieszenia powoduje, że przyspieszenie w ruchu jednostajnym po okręgu nosi nazwę przyspieszenia dośrodkowego. Wzór pozwalający obliczyć wartość tego przyspieszenia przedstawia się następująco: $$a = \frac{V^2}{r}$$ gdzie: V – moduł (wartość bezwględna) prędkości ciała, r – promień okręgu, po którym porusza się ciało. Przykład ruchu jednostajnego po okręgu. Ciało o masie m obraca się zgodnie z kierunkiem ruchu wskazówek zegara. Na rysunku zaznaczono cztery różne położenia ciała i odpowiadające im wektory prędkości $\vec{V}$ oraz przyspieszenia $\vec{a}$. Zauważ, że wektory prędkości oraz przyspieszenia mają jednakowe długości (stała wartość V i a ) oraz zmieniające się w sposób ciągły kierunki. Wektor prędkości jest zawsze styczny do toru ciała, z kolei wektor przyspieszenia jest zawsze skierowany do środka okręgu. Siła dośrodkowa Zgodnie z drugą zasadą dynamiki Newtona źródłem przyspieszenia jest siła działająca na ciało, w związku z czym przyspieszenie dośrodkowe ciała jest skutkiem oddziaływania na nie siły dośrodkowej skierowanej, podobnie jak przyspieszenie, do środka okręgu lub łuku okręgu. Wartość siły dośrodkowej wynosi: $$F = m \hspace{.05cm} a = m \hspace{.05cm} \frac{V^2}{r}$$ Ponieważ m, V oraz r przyjmują stałą wartość, dlatego też siła dośrodkowa, a więc i przyspieszenie a, także przyjmują stałą wartość. Siła dośrodkowa nie jest żadnym szczególnym rodzajem siły. Termin „siła dośrodkowa” odnosi się tylko i wyłącznie do kierunku oddziaływania siły na ciało. Siłą dośrodkową może być np. siła grawitacji, siła Lorentza lub siła naprężenia linki. Okres ruchu Podczas każdego pełnego obiegu okręgu ciało przebywa drogę $s = 2 \hspace{.05cm} \pi \hspace{.05cm} r$ (droga ta odpowiada obwodowi okręgu). Ponieważ bezwzględna wartość prędkości ciała w ruchu jednostajnym po okręgu nie ulega zmianie, dlatego też czas potrzebny na pokonanie każdego pełnego obiegu jest zawsze taki sam. Okres obiegu T, czyli czas w jakim ciało przebywa jeden pełny obieg okręgu wynosi: $$T = \frac{2 \hspace{.05cm} \pi \hspace{.05cm} r}{V}$$
Ruch wahadła jest przykładem ruchu zmiennego. Gdy wahadło porusza się tam i z powrotem, jego prędkość stale się zmienia. W najwyższych punktach wahadła wahadło zatrzymuje się na chwilę, po czym zmienia swój kierunek. To Ruch oscylacyjny gabloty gra pomiędzy energią potencjalną a energią kinetyczną w układ wahadłowy.
Prawo powszechnego ciążenia Dwie masy punktowe przyciągają się wzajemnie siłą wprost proporcjonalną do iloczynu ich mas, a odwrotnie proporcjonalną do kwadratu ich wzajemnej odległości Siała powszechnej grawitacji jest przyczyną na przykład spadania ciał na Ziemię, ruchu planet wokół Słońca, ruchu satelitów wokół Ziemi, pływów mórz i oceanów Wykres zależności siły grawitacji od odległości F(r) Wyznaczenie masy Ziemi Aby zważyć Ziemię wystarczy zauważyć, że wartość ciężaru ciał umieszczonego na powierzchni Ziemi jest równy wartości oddziaływania grawitacyjnego tego ciała i Ziemi. Przyrównując oba wzory możemy wyznaczyć rachunkowo masę Ziemi. Musimy znać promień Ziemi, przyśpieszenie ziemskie oraz stałą grawitacji. Pierwsze prawo Keplera Każda planeta krąży po orbicie eliptycznej, Słońce znajduje się w jednym z dwóch ognisk elipsy Drugie prawo Keplera Promień wodzący planety, czyli linia łącząca Słońce z planetą, w równych odstępach czasu zakreśla równe pola powierzchni. Z drugiego prawa wynika, że w peryhelium (w pobliżu Słońca), planeta porusza się szybciej niż w aphelium (daleko od Słońca). Trzecie prawo Keplera Stosunek kwadratu okresu obiegu planety wokół Słońca do sześcianu wielkiej półosi jej orbity (czyli największej odległości od Słońca) jest stały dla wszystkich planet Wyprowadzenie trzeciego prawa Keplera Zakładamy, że planeta obiega Słońce po okręgu, a środkiem okręgu jest środek Słońca Pole grawitacyjne- jest to przestrzeń, w której na ciało obdarzone masą działają siły grawitacji. Pole grawitacyjne jest polem wektorowym, ponieważ siła przyciągania działająca w każdym jego punkcie ma nie tylko określoną wielkość, ale również i określony kierunek. Linia sił pola- tor, po którym porusza się ciało w polu grawitacyjnym pod działaniem siły przyciągania nosi nazwę linii sił pola. Linie te maja zwrot odpowiadający kierunkowi poruszającego się ciała próbnego. Dla pola grawitacyjnego zwrot linii skierowany jest do źródła pola. Natężenie pola grawitacyjnego w danym punkcie jest to stosunek siły grawitacji działającej na umieszczone w tym punkcie ciało próbne do masy tego ciała. Jest to wielkość wektorowa, kierunek i zwrot wektora natężenia jest zgodny ze zwrotem i kierunkiem siły grawitacyjnej. Przy pomocy tej wielkości można porównywać ze sobą pola grawitacyjne pochodzące od różnych źródeł, ponieważ wielkość ta nie zależy od masy ciał umieszczonego w polu źródła. Wykres zależności natężenia pola grawitacyjnego od odległości Natężenie pola grawitacyjnego a przyspieszenie grawitacyjne- w danym punkcie pola grawitacyjnego wartość jego natężenia odpowiada wartości przyspieszania grawitacyjnego. Obie te wielkości fizyczne dla tego samego źródła pola są sobie równe, co do wartości. Pole grawitacyjne w pobliżu powierzchni Ziemi można przyjąć, że dla niewielkich obszarów przestrzeni w pobliżu Ziemi linie sił pola grawitacyjnego są do siebie równoległe, a jego natężenie jest we wszystkich punktach pola stałe i równe. Pole takie nosi nazwę jednorodnego Praca w polu grawitacyjnym Praca siły zewnętrznej w polu grawitacyjnym nie zależy od kształtu toru, po którym porusza się ciało, a tylko od położenia punktu początkowego i końcowego toru. Wyprowadzenie wzoru na pracę w polu grawitacyjnym Przy wyprowadzeniu wzoru na pracę bierzemy pod uwagę wartość średniej siły wyznaczonej ze wzoru na średnią geometryczną Energia potencjalna w polu grawitacyjnym jest wyrażona wzorem znak minus oznacza, że energia potencjalna ciała jest ujemna w stosunku do nieskończoności, gdzie jest równa zeru. Potencjał pola grawitacyjnego jest to wielkość skalarna przy pomocy, której opisujemy pole grawitacyjne w sensie energetycznym w sposób jednoznaczny. Ponieważ jego wartość nie zależy od masy ciała próbnego umieszczonego w polu źródła. Praca wyrażona potencjałem Powierzchnia ekwipotencjalna to powierzchnia, w której każdy jej punkt ma tą samą wartość potencjału. Pierwsza prędkość kosmiczna to najmniejsza prędkość, jaką należy nadać ciału względem przyciągającego je ciała niebieskiego, aby ciało to poruszało się po zamkniętej orbicie. Ciało staje się wtedy satelitą ciała niebieskiego. Dla Ziemi wynosi ona około 7,9km/s Wyprowadzenie wzoru na pierwszą prędkość kosmiczną Przyjmujemy, że podczas ruchu orbitalnego po orbicie kołowej siła grawitacji stanowi siłę dośrodkową Druga prędkość kosmiczna II prędkość kosmiczna to prędkość, jaką należy nadać obiektowi, aby opuścił na zawsze dane ciało niebieskie poruszając się dalej ruchem swobodnym. Dal danego ciała niebieskiego jest pierwiastek z dwóch razy większa od pierwszej prędkości kosmicznej. Dla Ziemi wynosi ona około 11,2km/s Wyprowadzenie wzoru na drugą prędkość kosmiczną Wyznaczamy ją porównując energię obiektu znajdującego się na powierzchni oraz w nieskończoności. Energia w nieskończoności równa jest zeru, zatem na powierzchni sumaryczna energia też musi się równać zeru. Polityka PrywatnościInformacja:Drogi Internauto! Aby móc dostarczać Ci coraz lepsze materiały redakcyjne i usługi, potrzebujemy Twojej zgody na dopasowanie treści marketingowych do Twojego zachowania. Dzięki tej zgodzie możemy utrzymywać nasze cookies w celach funkcjonalnych, aby ułatwić użytkownikom korzystanie z witryny oraz w celu tworzenia anonimowych statystyk serwisu. Potrzebujemy Twojej zgody na ich używanie oraz zapisanie w pamięci udzielić nam zgody na profilowanie, cookies i remarketing musisz mieć ukończone 16 lat. Brak zgody nie ograniczy w żaden sposób treści naszego serwisu. Udzieloną nam zgodę w każdej chwili możesz wycofać w Polityce dbamy o Twoją prywatność. Nie zwiększamy zakresu naszych ZGODYZGODA
3. Po uwiązaniu kamienia na sznurku chłopiec zatacza nim w poziomie okrąg o promieniu 1,5m na wysokości 2m nad ziemią. Sznurek pęka, kamień odlatuje na bok i spada na ziemię, po przebyciu w poziomie odległości 10m. Jaka była wartość jego przyspieszenia dośrodkowego, gdy poruszał się po okręgu. 4.

Zadanie 1. Znając promień orbity ziemskiej oraz okres obiegu Ziemi wokół Słońca, wyznacz masę dane tablicowe: R = 1 AU = 150 mln km = 1,5∙1011 m oraz T = 365,25 ruchu po orbicie Ziemia porusza się pod wpływem siły grawitacji wytwarzanej przez Słońce. Jest to ruch w przybliżeniu po okręgu, więc siła grawitacji jest siłą dośrodkową. Zapisujemy wzór na przyspieszenie dośrodkowe i prędkość liniową w ruchu po wartość siły prędkość do wzoru na siłę wstawiamy wzór na siłę kilku przekształceniach otrzymujemy trzecie prawo masę Słońca i podstawiamy wartości liczbowe (pamiętając o zamianie dni na sekundy).ODP. Masa Słońca wynosi około 2∙1030 2. Wyprowadź wzór na gęstość Ziemi. Przyjmij, że dany jest promień R, przyspieszenie grawitacyjne na powierzchni g oraz stała grawitacyjna trzy potrzebne wzory:– na gęstość materii ,– na objętość kuli ,– na wartość przyspieszenia ziemskiego .Podstawiamy wzór na objętość do wzoru na wzoru na przyspieszenie wyznaczamy masę i podstawiamy do powyższego Gęstość Ziemi wyraża wzór .

wahadło sferyczne – ciało na nierozciągliwej nici, ale jego ruch nie jest ograniczony do płaszczyzny, wahadło stożkowe – ciało na nierozciągliwej nici, a ciało porusza się po okręgu, wahadło podwójne – ciało wahadła jest punktem zawieszenia kolejnego wahadła, może być rozważane jako płaskie i sferyczne, matematyczne i okres - Czas jednego pełnego okrążenia, sekunda - Jednostka okresu, częstotliwość - Liczba okrążeń w jednostce czasu, herc - Jednostka częstotliwości, dośrodkowa - Siła utrzymująca ciało w ruchu po okręgu, geostacjonarny - Satelita, który znajduje się cały czas nad tym samym punktem Ziemi, Armstrong - Pierwszy człowiek na Księżycu, przeciążenie - Stan pozornego zwiększenia ciężaru ciała, Jowisz - Największa planeta Układu Słonecznego, niedociążenie - Stan pozornego zmniejszenia ciężaru ciała, Merkury - Najmniejsza planeta Układu Słonecznego, astronomiczna - 150 mln km to jednostka ..., Newton - Odkrył prawo powszechnego ciążenia, Kopernik - Pierwszy uznał, że Ziemia jest jedną z planet krążących wokół Słońca, nów - Jedna z faz Księżyca, zaćmienie - Zjawisko astronomiczne polegające na tym, że cień jednego ciała pada na powierzchnię drugiego, Leaderboard This leaderboard is currently private. Click Share to make it public. This leaderboard has been disabled by the resource owner. This leaderboard is disabled as your options are different to the resource owner. Log in required Options Switch template Interactives More formats will appear as you play the activity.

ruch po okręgu quiz for 1st grade students. Find other quizzes for Physics and more on Quizizz for free!

. 436 323 402 232 218 170 261 351

ruch po okręgu i grawitacja